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A simple model for the prediction of non-linear stress relaxation following the cessation of steady 
shear flow is proposed. The model allows the calculation of the shear and first normal stress differ- 
ence components of the stress. The mathematical f lexibi l i ty of the model is reduced to a minimum 
with the result that no adjustable parameters are employed and only linear dynamic deformation data 
are required to calculate the non-linear behaviour. Verification of the model was carried out with 
data available for two viscoelastic fluids and good agreement between the predictions and the experi- 
mental results was obtained for the range of shear rates examined (0.167 ~<7 ~< 16.7 sec-1). 

INTRODUCTION 

Viscoelastic fluids which have been deformed to such an 
extent that their response is non-linear have proven difficult 
to model. The rheological attack on this problem area has 
generally resulted in constitutive equations designed to 
model all observed fluid phenomena. The equations thus 
obtained usually have a large number of parameters or a 
limited number of functionals. Of course, these equations 
must reduce considerably in the elementary situations such 
as steady simple shear flow. This axiomatic approach is 
described ~ as being 'developed in logical order from con- 
stitutive assumptions which are regarded as definitions of 
a certain class of materials-independent of the existence in 
nature of any materials satisfying the basic assumptions'. 
Much progress in the theory of viscoelasticity has been 
achieved through the axiomatic theories approach, however, 
the result is often inconvenient for engineering practice. 
This is a direct consequence of the 'high order memory 
function' required to model the non-linear viscoelastic be- 
haviour and the resulting mathematical complexity. 

The method proposed in this paper considerably reduces 
the mathematical flexibility of the model. The advantages 
that follow from this method are: (a) the calculation of the 
stress components during relaxation is simple and straight- 
forward; (b) the model is directly testable by experimental 
data and errors do not accumulate in the calculation of a 
large number of parameters of  functions; (c) the model can 
be interpreted qualitatively at the molecular level. 

At the present state of development, the model is res- 
tricted to the stress relaxation occurring upon the cessation 
of steady shear flow. Rheologically, this restriction is 
severe but in practice there are a number of flows occurring 
in polymer processing (e.g. extrusion and injection mould- 
ing) where the method could be useful. 

THEORY: REDUCTION OF THE NUMBER OF FREE 
PARAMETERS 

The number of free parameters (moduli, viscosities or 
relaxation time constants) used in a rheological model is sig- 
nificant when the model is applied to real flow data. The 

problem associated with choosing the number of para- 
meters has been discussed 2 for differential models, and for 
integral models 3. The difficulty is essentially the same for 
both types of model and arises because the model incor- 
porates either a series or spectral representation of the fluid 
properties. Stated briefly, the problem is that if the num- 
ber of  terms in the series (or the resolution of the spectrum) 
is increased then the accuracy of the parameter associated 
with each term (or the accuracy of the spectrum) is de- 
creased a'4. Thus, for a given set of experimental data, we 
can either determine a large number of independent para- 
meters with very large error or a small number of para- 
meters with great precision but which are mutually inter- 
dependent. From a problem solving point of view both 
cases are equally bad. In addition, these models are com- 
putationally awkward even when solved numerically with 
the aid of  a digital computer. 

The difficulties outlined above can be avoided by a 
model based on an 'identity strategy'. This simple model 
reduces the number of parameters to a minimum yet allows 
the accurate calculation of non-linear stress relaxation. The 
model is developed by considering the fluid to be in steady 
state shear flow. This condition is described by the White-  
Metzner equation: 

8P 
P+O - -  = 2r/d (1) 

8t 

where ~/St = the Oldroyd derivative; 0 = a characteristic 
t ime;P = the deviatoric stress tensor; ~7 = fluid viscosity; 
d = the rate of  deformation tensor. 

We follow the interpretation of White and Metzner s and 
Seyer and Metzner 6 for 0 and r7 and take: 

P l l  - P12 P12 
0 = and r7 - (2) 

2P12 ,7 

In this case, equation (1) is an identity and is satisfied by 
any viscoelastic fluid in steady shear flow provided only 
that the second normal stress difference, P22-P33 is zero. 
The idea of Truesdell 7 that a fluid in steady shear flow may 
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be characterized by only one relaxation time leads to the dP12 
following equation at the instant of cessation of flow: 

del2 1 
- = P 1 2  ; t = 0 ( 3 )  

dt 0 

dt 

Equation (3) serves to define the characteristic time, 0-, and 
thus at the cessation of flow we have two characteristic 
times: 0, defined by the steady shear and O-. If the fluid is 
regarded as experiencing simultaneous stress build-up and 
relaxation in steady shear s and there is no large discon- 
tinuity in the relaxation properties at the instant of cessa- 
tion of flow we may take the two characteristic times as 
equal, 0 - O. Experimentally, it is known that the rapid 
relaxation rate occurring at the cessation of flow persists 
for a short time and equation (3) may be applied in the 
interval, 0 ~< t ~< 1/~. This is justified by the molecular 
interpretation recently proposed by HlavhSek and Carreau s 
where the macromolecule retains some compact coiled 
structure which is responsible for the relaxation behaviour 
for t ~< 1/~. The model of simultaneous stressing and relaxa- 
tion suggests a correspondence between the characteristic 
time in steady shear flow and an effective relaxation time, 
Or, obtained from dynamic (sinusoidal) deformation 9. The 
characteristic time, Ol, is obtained from: 

o'(~) 
O1 - - -  (4) 

G"(~)co 

where G' and G" are respectively the real and imaginary 
parts of the complex loss modulus and ~ is the frequency 
of the sinusoidal excitations. H]av~6eketal.gnoted that 
at the cessation of flow the relationship (0 - A0)t=-0 -~ Ol, 
where A < 1, is valid and 0 l is thus the characteristic para- 
meter governing the fluid's memory. 

In this paper, we take directly, 0 - A0 It=-0 = Ol and use 
the approximation: 

G'(w) 
0 O-it:0 = 01 - I (5) 

C" (w)co I 

for the interval 0 < t < 1/~. 
For long times, t ~ 0% the component P12 relaxes accord- 

ing to the well-known function: 

dPl2 1 
- -  - - - P 1 2 ;  t ~ o o  ( 6 )  
dt Tma x 

where Tma X is the largest relaxation time in the spectral 
sense. For the purposes of  calculation, equation (6) can be 
applied for t/> Zmax with negligible error. The characteris- 
tic time 0-is seen to be a function of time in the interval 
Ol ~ O-~ '/'max as t varies between 1/~ and rmax. In the 
manner of Hlavfi~ek et al. 9 we choose the following depen- 
dence for O-(t): 

O-(t)= G'(6o) [ 
G"(t.o)6o o~=l/t 

(7) 

and note that the similarity between log 0 vs. log l i t  and 
log OI vs. log 6o supports the use of equation (7). 

The P12 component may thus be found at any time by 
use of the appropriate relaxation time, O-, for that instant: 

1 
O- P12, all t (8a) 

where 

G'(w) to=5- 1 (8b) O-- o < t # 

G I ((,,I,,)) 
I L < t ~< rmax (8c) 

G"(6o)6o Ire=l# "Y 

= Tmax t t> Tma x (8d) 

Similarly, the normal stress component, P11-P22, as deter- 
mined from equations (2) and (3) is: 

d(Pll - P22) 1 
dt - O- (/bll - P 2 2 ) - J b l 2  (9) 

where O-is given by equations (8b, 8c, 8d). The t i lde , ,  
indicates the normalized component, e.g. Pi/= Pii(t)/ 
eij(t = o). 

The model may be summarized as the approximation 
embodied in equation (8c) which interpolates between the 
points t = 0 and t = oo where equation (8a) is identically 
satisfied. The model has been tested with data of two visco- 
elastic fluids as described below. Equation (9) is the corres- 
ponding approximation for the first normal stress differ- 
ence and has been verified (for a slightly different history 
of O-) recently by Hlav~ek et al. 9. 

CALCULATIONS AND EXAMPLES 

The differential equations (8) and (9), valid in a small time 
interval, At, are written in finite difference form as: 

{P12} i+l  = {P12}i exp - (At/t) 

{Pl l -P22}i+l  = _  {(Pll-P22)_JS12}i  X 

(I0) 

e x p -  ~ "1" { P l l -P 2 2 } i  (11) 

The subscripts i and i + 1 refer to the values of the variables 
at the ith and i + 1 time intervals respectively. Two systems 
(1.5% polyacrylamide and 2% polyisobutene solutions) for 
which relaxation data were available 1° and whose proper- 
ties are given in Table I were used to verify the model. The 
results are presented in Figures 1 -4  as dimensionless stress 
versus time for both shear and normal components for a 
range of steady shear deformation rates. Generally, good 
agreement is obtained for the range of variables examined. 

The small discontinuity evidenced by the dimensionless 
stress relaxation curves commencing at a value somewhat 
smaller than 100% at time, t = 0, is not explicitly accounted 
for at this stage of development of the model. Consequent- 
ly, it was necessary to estimate the discontinuity by assum- 
ing different values for the magnitude of the discontinuity 
and choosing the value that gave the best fit of calculated 
results to the experimental data. It was found that the dis- 
continuity was about 12% of the steady shear value (for 
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Table I Data for the two fluids used to test the proposed non-linear stress relaxation model 

2.0% Polyisobutylene in Primol 355 
1.5% Polyacrylamide (Dow ET597) in 50/50 vol % 

water--glycerine 

PI1 - P22 V(~) P l l  - P22 q(~) 
O/ ~(+) O/ ~(~) 

(sec -1 )  2P12 ~ (sec) (cp) ~'(o~=~) 2Pt2~ (sec) (ep) q'(o~='y) 

0.0167 61.7 58.4 4080 1.18 . . . .  
0.040 35.8 32.0 2370 1.32 30.8 24.3 1334 1.38 
0.167 12.6 10.2 942 1.60 12.2 8.55 534 1.61 
0.400 6.45 4.77 535 1.82 6.03 4.13 299 1.77 
1.67 2.06 1.30 212 2.24 1.97 1.16 115 2.07 
4.00 1.03 0.579 120 2.55 0.962 0.520 64.5 2.27 

16.7 0.322 0.149 47.0 3.14 0.290 0.135 24.8 2.65 
40.0 0.160 0.064 26.8 3.57 0.135 0.0580 13.9 2.92 

167.0 . . . .  0.0400 0.0147 5.33 3.41 
400.0 . . . .  0.0192 0.0630 2.97 3.76 

8%., 
o0o  

0 2 0  4 0  6 0  8 0  I 0 0  
t (sec) 

Figure 1 Dimensionless shear stress relaxation for 2% polyisobuty- 
lene solution in Primol 355. Calculated values of ~/ (see--l): A, 
0.0167; O, 0.162; [3, 0.527; V 5.27. - - ,  Experimental data 
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Figure 3 Dimensionless shear stress relaxation for 1.5% poly- 
acrylamide (DOW ET-597) solution in 50/50 water/glycerine. 
Calculated values of ~, (sec--1): G, 0.0167; O, 0.167; o, 1.67. 

• Experimental data 
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Figure 2 Dimensionless 1st normal stress difference relaxation for 
2% polyisobutylene solution in Primol 355. Calculated values of 
~, (sec- l ) :o,  0.167;[3, 1.67; A, 16.7. - - ,  Experimental data 
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Figure 4 Dimensionless 1st normal stress difference relaxation for 
1.5% polyacrylamide (DOW ET-597) solution in 50/50 water/ 
glycerine. Calculated values of ~ (sec -1 ) :  O, 1.67; z~, 16.7, - - ,  
Experimental data 

each component) for the polyacrylamide solution and 
approximately 10% for the polyisobutylene solution. 

The choice of At for the calculation is relatively non- 
critical and is easily established. Clearly, at small time, At 
has the limit At ~< 1/~/. In practice it seems adequate to 
take At ~< 1/10~ for the region t ~< 1/~. At long times, 
t i> rmax, the calculation is sufficiently accurate with At = 
rmax- In the interval between t = 114/and t = rmax, At = 1/'~ 
is adequate although a logarithmic variation of At mini- 
mizes the number of iterations required at the expense of 
additional program complexity. It is remarked that, in 
general, reducing At leads to a more accurate solution and 
does not cause computational problems. 

DISCUSSION 

It is seen from Figures 1-4 that agreement between the 
proposed method and experimental data is quite good. In 
general, the model tends to underestimate the speed of 
relaxation, particularly at slow rates of deformation. This 
may be due to either inaccuracies in the original data or it 
may reflect the difficulty of accurately determining the 
dynamic modulus at low frequencies. Since the relaxation 
curves are calculated directly from the value of 0-obtained 
from the dynamic moduli (equations 8b -d )  the errors 
appear undiminished in the result. It appears that the 
model is sufficiently accurate to warrant further investiga- 
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tion and the proposal that the rate of stress relaxation is 
governed by an effective relaxation time obtained from 
dynamic data has validity. 

The model completely avoids the problems, both com- 
putational and interpretive, associated with the extrapola- 
tion of 'higher order memory functions' into the regime of 
non-linear behaviour. In place of the multiparametric 
approach there is only one parameter, a variable relaxation 
time which is specified throughout its range in a simple 
manner and, at the extrema, by equations which are iden- 
tically satisfied. This yields a model which is simple and 
straightforward. 

The non-linearity is accounted for by the very short 
relaxation times which are dominant immediately after the 
cessation of flow. Thereafter the relaxation is governed by 
relaxation times determined from dynamic data. This is 
reasonable in view of the similarity between the curves of 
0 and Ol 9 (Table 1) and the physical interpretation of this 
similarity recently proposed by Hlavh~ek and Carreau s. 
This interpretation is based on a proposal by Bueche 1~ that 
a macromolecule in steady shear flow experiences an oscil- 
lating stress and is consistent with a greater rigidity [G'(¢o)] 
and a faster non-linear stress relaxation at higher rates of 
deformation. This is in contrast to the network theories 12, 
where parameters of the theory have to be varied in order 
to obtain a satisfactory fit to the data. The problem in this 
situation is the interpretation of this variation since the 
parameter is not directly related to the physical model. In 
the proposed model the memory of the fluid at higher gra- 
dients is shorter because 0-is a sharply decreasing function 
of ~ and not because a certain level of network deformation 
has been reached. Consequently, 0-is seen to be the para- 
meter governing the memory of the fluid. 

A difficulty with the proposed model (and others) is the 
apparent discontinuity of the stress at the cessation of flow. 
At the present time, there is no obvious way to include this 
discontinuity which may be due to purely viscous effects 
in the polymer solution. An alternative possibility is that it 
is an artifact of  the method used to obtain the data. In 
either case, it is clear that additional data is required to 
give insight into the effect (instantaneous viscous 'relaxa- 
tion' or an extremely fast non-linear relaxation) or to ob- 
tain accurate data with which to test or modify the exist- 
ing model. Since the effect is small, about 10% of the 
steady state stress, it is not anticipated that the basic fea- 
tures of the model will be required to be changed. 

CONCLUSIONS 

A model based on the White-Metzner equation and the 
idea of Truesdell to characterize a steady shear flow by 
one characteristic time has been formulated to predict non- 
linear stress relaxation. The model is simple and has only 
one time varying parameter, 0-, which is easily calculable 
from linear dynamic moduli data. The model thus avoids 
the difficulties inherent in the higher order memory func- 

I. Patterson 

tion models because of the close relationship of 0-to ex- 
perimental data and predicted results. Further, the correla- 
tion afforded by the use of the dynamic modulus is easily 
interpretated by ideas originally proposed by Phflippoff 13 
and Bueche ~1 and recently refined and extended by Hlav~Eek 
and Carreau s. 

The model uses easily obtained linear dynamic data, and 
these data are used to predict the non-linear stress 
relaxation. 

NOMENCLATURE 

d 
G' 
G" 
P 
t 

8/~t 
71 
0 

O/ 

rmax 
co 

the rate of deformation tensor, 
real part of the complex modulus, 
imaginary part of the complex modulus, 
deviatoric stress tensor, 
time, 
shear rate, 
Oldroyd derivative, 
fluid viscosity, 
characteristic time, equation (1), 
characteristic time, equation (3), 
characteristic time, equation (4), 
largest relaxation time of the fluid, 
frequency of sinusoidal excitation. 
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